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Twistor Diagrams for Spinning Massless Free Fields 
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A set of simple identities is utilized to build up new projective twistor 
diagrams for massless free fields of arbitrary spin in real Minkowski space. 
It is effectively shown that the inner structure of the configurations which 
arise out of implementing the relevant techniques has characteristics that 
are different from those of the conventional diagrams associated with the 
Kirchoff-D'Adhemar-Penrose integral expressions. A nonhomogeneous version 
of the configurations is also provided. 

1. I N T R O D U C T I O N  

One of the usual devices for evaluating explicitly massless free fields 
of arbitrary spin in both fiat and curved spacetimes is constituted by the so- 
called Kirchoff-D'Adhemar-Penrose (KAP) integral expressions (Penrose, 
1980; Penrose and Rindler, 1984). Normally, such expressions carry integ- 
rands that show up as two-forms set upon spacelike two-spheres arising from 
intersections between null hypersurfaces of real Minkowski space RM and 
the past null cones of  the points at which the fields are to be actually 
calculated. Accordingly, the data which generate the fields appear as the 
result of  the action of  certain conformally invariant operators on elementary 
initial data centered at points belonging to the null hypersurfaces. 

A remarkable feature of  the KAP expressions is the fact that they neatly 
fit in with the twistor formalism (Cardoso, 1991). In fact, the basic procedures 
leading to the standard twistorial version of the integrals include taking the 
future null cone C~ of  some origin O of  RM as the initial-datum hypersurface 
for the fields. Thus, the RM integrals can be thought of  as being taken over 
(compact) spaces of two-edge null zigzags that start at O and terminate at 
fixed points lying in the (convex) interior of the closure of  C~. What particu- 
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larly arises out of completing the transcription procedures is that the conformal 
symmetry borne by the underlying Minkowskian structures is reduced to the 
Poincar6 symmetry. The crucial point is that the SZ-spheres turn out to be split 
up into products of projective S Lstructures when the relevant prescriptions are 
effectively worked out, whence, in the case of either handedness, the overall 
contours occurring in the respective twistor integrals bear the topology S 1 
• S l, likewise being contained in products of subsets of the Riemann spheres, 
which appropriately correspond to the projective lines associated with the 
starting and ending vertices of the null graphical configurations. It appears that 
the appropriateness referred to above is essentially related to the handedness- 
valence hypothesis arising in the framework of twistor theory (Penrose and 
MacCallum, 1972). In addition, it has been shown that the latter integrals 
can be reexpressed in terms of homogeneous twistor diagrams by making use 
of a method which enables one to pass directly from integrals of holomorphic 
projective one-forms to integrals of holomorphic projective three-forms (Car- 
doso, 1993). Each of the resulting configurations thus carries one of the 
universal projective twistor-vertex three-forms along with a pair of appropriate 
constant twistors. 

In the present paper, we utilize a set of simple identities to build up 
projective two-spotted-vertex twistor diagrams for the KAP integrals. 
Roughly speaking, the main idea here is to prescribe the functional dependence 
of the twistor data for the fields in such a way that the coupling of the 
conventional (holomorphic) twistor-datum one-forms with certain normalized 
auxiliary integrals automatically yields Poincar6-invariant integrands which 
do not involve derivatives of the twistor-function kernels explicitly. The 
auxiliary structures are taken as one-dimensional projective integrals which 
carry only infinity-twistor pieces involving appropriately the (independent) 
twistors that enter into the definition of the initial data on C~. Subsequently, 
we will make use of trivial differential relations to convert the new diagrams 
into inhomogeneous structures. For the sake of completeness, we will first 
recall the twistor integrals mentioned before (Section 2). The construction 
of our configurations is carded out in Section 3. There, it will suffice to 
carry through only the procedures that give rise to the diagrams for unprimed 
fields. Also, it will be assumed at the outset that the fields carry positive 
energy. This assumption will indeed facilitate setting up the key blocks in a 
natural way. We make some general remarks on the pertinent techniques in 
Section 4. 

One of the motivations lying behind the completion of our procedures 
rests upon the belief that the corresponding methods would eventually provide 
fresh insights into the twistor description of massless free fields. Throughout 
the work, we will employ the natural system of units wherein c = h = 1 
together with the notational devices provided by Penrose and Rindler (1984, 
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1986). The indices which conventionally label the coordinates of spacetime 
points will be suppressed. 

2. STANDARD INTEGRALS 

The standard twistor KAP integral for a left-handed massless free field 
~AB..c(X) of spin s < 0 on RM is written as (Cardoso, 1991) 

q~,~a...c(.~) - (-1)-z'+'  ~ ~A~a. .. ~C~(IV~, W~)2 A ~I~ (2.1) 
2"n-i rlxr2 

where the point 2 is taken to be future-null-separated from some point / 
C~, the spinor 2 A being chosen covariantlY2 constant along2the (null) geodesic 
that passes through J: and 2, and 8W stands for I~W~ dW~. The W-twistors 
are null and satisfy the (conjugate) incidence conditions at J:, being explicitly 

k k k , 
defined as W~ = (o, h W A ), with the label k taking either the value 1 or 2. 
In fact, the twistor W~ is associated with the generator ~t of C~), which 
contains 1, its ,n--part being also covariantly constant along ~h- The quantity 

l 2 
~(W~, W~) is the twistor-datum one-form for the field under consideration. 
It actually bears holomorphicity in both variables, and is defined on the 
product space ~*  • ~*,  which involves two (closed) subsets of the Riemann 
spheres associated to the dual projective lines corresponding to O and 2. Its 
defining expression is written out explicitly as 

1 2 0 l 2 l 
~(W~, W,~) = 2 ~(W~,, W,.) dW~ (2.2) 

with the function kernel borne by the right-hand side amounting to the twistor 
version of the null datum on Co for the field. It also has the symmetry- 
homogeneity property 

1 t 2 t 2 
~(aW,.  bW,~ + cW,~) = c2~-2~(W,. W~,) (2.3) 

where a and c belong to C - {0} and b ~ C, with C standing for the set 
of complex numbers. Whence the integral (2.1) really carries a scaling- 
invariant (SI) integrand. Each of the contours Fk is an S Lcontour subject to 
the simple prescription 

~ D F I = S  1, ~ D F 2 ~ - S  l (2.4) 

We stress that a typical twistor function which occurs in the universal contour 
integral for the field (see, for instance, Penrose and Rindler, 1986) turns out 
to be formally expressed as 

2 1)_2~+1 ~ t 2 f~(W,~) = ( -  ~(W,~, W,~) (2.5) 
r l  
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The projective one-spotted-vertex diagrammatic representation of the 
field is readily accomplished by inserting into the integrand of (2.1) the SI 
conformally invariant two-form (Cardoso, 1993) 

2 2 
2 1 d(Av'Wv.) D(BvW,3 

O(W~) = (2~i)---- 5 ~ ^ 2 (2.6) 
(A~W~.) (B"W,,) 

where A ~ and B ~ are fixed null twistors through an arbitrary point y e RM. 
We thus have the SI integral 

2 2 
I ~ ~a~)a ])c (I~"A~B")f'(W'~)AW 

- -  " ' "  2 2 (2.7) 
r ~ ~.2 (A~W~)(B~W~) 

where 

1 ~cxl~.~t~ttx 2 2 2 A ~  = ~.. dW~ ^ dW., ^ dW~ 

and ~2 is a suitable three-real-dimensional contour lying in M • ~ • 50" 
• ~*  whose topology is S l • S l • S t, with ,sa and ~ being the "unstarred" 
projective versions of A ~ and B ~, respectively. Indeed, each of the sets M 
and ~ consists of a single point belonging to the projective line associated 
with y. Consequendy, we are led to the diagrammatic structures as displayed 
in Cardoso (1993). 

3. EXPLICIT TWISTOR DIAGRAMS 

Let us consider the integral 
2 1 

2 1 ~ (I~'~J~,Y~)(P"SpR~)(I~r dW~) 
= i l (3.1) 

~(w~) ~ ~, (t~W~R~)(t~WpS~) 

where ~ 1 is a one-real-dimensional contour, and S 0, R~ are arbitrary (constant) 
null twistors. The pertinent prescription will be made up briefly. Hence, 

1 
parametrizing W~ = JR + ~Y~, with ~ e C - {0}, and invoking the indepen- 
dence between the W-twistors yields 

2 
2 (F'f~J~,YIO(I~SpR,,)(I~"W~Y,,) 1 ~ dE 

~(Wo,) = (l,~fjy,~Rl~)(ip,,yps,~) 2~r----i ~ (~ - a)(~ - b) (3.2) 

where 

a = - (r*J~, R~)(t ~" r~ R,)- z, b = -- ([~Y~ S~)(P'r~, S,)- 
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1 
Obviously, the nullity of  W~, implies that Jr and Y. are also incident null 
twistors. In order to obtain a useful result, we take %~ as an oriented circled 
loop which lies in the E-plane and surrounds either a or b, supposing addition- 
ally that the flag poles associated with the (null) geodesics corresponding to 
Y,, Ra and Y,, Sf~ are not in each case proportional to one another. Therefore, 
choosing the contour orientations in an appropriate way and making use of 
the relation 

(l~f~y,~Rf~)(IX,Jx S~) - (Ir R,) = (F'I3J, Yf~)(IX'Sx R~) 

we obtain the (SI) normalized integral 

2 2 2 
$ ( W , )  = (I~W~,Y~)-t~3(W.) = 1 

(3.3) 

(3.4) 

At thispoint, we effectively assume that the strongly required skew symmetry 

of ~(W~, W,) is prescribed as 

I 2 I 1 2 
r  w.)  = r  /~'w~ w.) (3.5) 

whence one of the homogeneity properties of the ~-function (Penrose, 1975) 
turns out to be "reduced" to the statement 

2 O l z 2 3 l 2 t 2 
Wo ~ ~(W,,  W,) + W~ -'5-- ~(W~,, W,) = (2s - 1)~(W~, W,) (3.6) 

OWo OWl 
Some elementary computations thus give rise to the wedge-product relation 

1 2 2 1 1 2 1 I 
~ ( W , ,  We,) ^ (I~,W~ dWO = (�89 - s)dP(Wr W, ) I  ~" dW~ ^ dW,  (3.7) 

Furthermore, inserting into the integrand of  (2.1) the structure (3.1) together 
with the result of the combination of  (3.7) with the trivial identity 

1 
1 l t d W o  t 

I ~ dW~ ^ dW~ = --i'-- ^ ~W (3.8) 
wo 

1 
and performing the Wo-integral leads to the SI expression 

1 ~ 2 2  ~)cF,(~V,,2 I g ~ g  (3.9) = W, d S w  ^ qbaBc(2) (2"~i) 2 ~12 OaOn...  

1 2 
where the twistor function Fs(W,,, W~,) accordingly carries a suitable 2"rri 

1 2 2 
factor and takes up r W~) along with the product of (I*'~Y~WO - 1 with 
the infinity-twistor factors that occur explicitly in the integrand of (3.1), 
thereby bearing the spin-weight character { - 2 ,  2s - 2; 0, 0}. The contour 
~/12 appears as the product of two appropriate one-real-dimensional contours 
having the same topology as before. It should be pointed out that (3.8) still 
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/ -2s 
Fig. 1. A projective two-spoRed-vertex twistor diagram associ- 
ated with the KAP integral for a left-handed massless free field 
of spin s < 0. All the lines and numbers bear the usual meaning. 

l I 
holds when the component W0 is replaced by W 1. Now, using the method 
leading to the expression (2.7) yields 

2 2 v 
d~AB...C(~) -- 1 ,~ ~AOB . . . O c ( I ~ v C ~ D  )(I~-~ G ~ H ~ )  

- '6  - - 7 - - ~  (2~'0 Yrl2 (C~Wf~)(DvW~)(G~W~)(HvWO 
I 2 1 2 

x F,(W,, W~,) A W ^  AW (3.10) 

with the auxiliary twistors and either of  the contour structures involved being 
specified in a way similar to that given by (2.7). We are thus led to the 
diagram depicted in Fig. 1. 

It is evident that at this stage we are able to write down explicit diagram- 
matic equalities involving the above structure and the ones for left-handed 
fields provided in Cardoso (1993). Additionally, we can immediately construct 
the corresponding diagrams for right-handed fields by taking complex conju- 
gations and changing kernel letters appropriately. We will make a further 
point concerning such correspondences in Section 4. A relevant equality is 
exhibited in Fig. 2. 

A nonhomogeneous two-spotted-vertex diagram for the field with which 
we have effectively been dealing can at once be built up from Fig. 1 by 
employing the differential relation 

a~k) ^ AI~' = a ' w  (3.11) 

I 

"~s 2 
/ 

Fig. 2. A projective diagrammatic equality for 
a right-handed massless free field of spin s > 
0. The twistor functions and vertices occurring 
in the structures are all specified in a way similar 
to that for the left-handed case. 
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k 
where ~t) denotes any (nonvanishing) component of W~, and 

1 k k k k 

is the usual conformally invariant twistot-vertex four-form (Penrose, 1975). 
Thus, the integral (3.10) gets replaced by 

1 s ~A~n... ~c(l~,,Cv'O")(ll3.tG f3H~z) 
~,A~ .c(I) ~o -----2-[ - - ~  

(2xri) s o2 (CPWf~)(D~Wv)(G,W~)(H~W~) 
1 2 1 • F,(W,, W,~) a4w^  d4W (3.13) 

with Cl2 being a (compact) eight-real-dimensional contour given as the prod- 
uct of S ~-structures. We notice that the implementation of this latter prescrip- 
tion does not affect the singularity-line configuration of Fig. 1. 

4. CONCLUDING REMARKS 

It is worth emphasizing that the choice of C~ as the initial-datum hyper- 
surface for dpAs...c(X) is what guarantees the viability of the prescription leading 
to (3.7). As far as the homogeneous structures are concerned, this fact clearly 
entails interchanging the roles played by the null slices of the projective 
twistor spaces when fight-handed fields are explicitly taken into consideration. 
We should remark that the singularities of the inte~and of equation (2.7) 

occur whenever the (null) geodesics representing { W~} meet the generators 
associated with the auxiliary twistors involved. Under these circumstances, the 
point y turns out to be null-separated from the intersection points. Evidently, a 
similar observation is applicable to the integrand of equation (3.10) as well. 

A striking feature of the techniques involved in the derivation of equation 
(3.9) is that the only parametrization procedure effectively allowed for is the 
one associated with the conformally invariant definition of vertices of null 
cones. At fh'st sight, one might think of normalized integral kernels of the type 

1 ~ (I~R~Sv)BW 
1 I (4.1) 

2~ri "YI (p,~W,R~)(IX,Wx SO 

as apparently natural auxiliary devices for obtaining the diagram expressed 
by (3.10). Nevertheless, this procedure would give rise to the "annihilation" 
of the combined integrand because its completion implies the occurrence of 
the identically vanishing piece 

1 0 1 2 
W~ ~ ~(W~, W~) (4.2) 
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Indeed, the above situation seems to bring out the adequacy and nonwiviality 
of our methods. With respect to this fact, it should be observed that the 
connectedness of the diagrammatic blocks which emerge from the "splitting" 

1 2 
of the functional structure of Fs(W~,, W~l can be 2 ensured if we look upon the 
infinity-twistor inner product carrying W,~ and W~ as one of the singularity 

lines of the entire diagram. We point out that if the ~:-integration were 
somehow considered alone, then we would have to allow Poincar6-invariant 
branches to carry negative numbers upon opening up the bubble of Fig. 1. 

2 
The condition for (3.4) to remain valid would thus amount to I~"Y~W~ =/: O. 
However, this inner l~roduct must be regarded as a singularity of the overall 

integrand when the W-integration is put into effect. It follows that, writing 

where 

1 2 
1 2 (I'~I~J,~Y~)I-*(I'YSSvR~)(I"W,W,,) 2~-1 

F~(W,~, W~) = hs t t 2 (4.3) 
(I'W~,R,)(t"aW.,Ss)(t~'Y~, W,) 

h, = 2ar i ( -  I ) - 2 ( 1  - 2s) (4.4) 
1 

and representing by dashed-dotted lines the parametrization of W,~ incorpo- 
rated into (3.2) yields an equality carrying Fig. 1 along with the SI configura- 
tion of Fig. 3, with the thick-line branches particularly standing for the 
effective Poincard-invariant singularities. Of course, the standard four-line 
rule is not applicable to the spotted vertices because of the pattern of the 

1 2 
functional structure carded by ~(W,,, W,,). If the type of the denominator of 
the integrand of (3.1) had been modified, the construction of a diagram 

carrying a spotted ~V-vertex could also have been achieved. 

R l S 

c 

I"l [ - 2  / ~  s G 

Y 
It 

W - 2 s ~  

Fig. 3. 



Twistor Diagrams for Spinning Massless Free Fields 1649 

ACKNOWLEDGMENTS 

I would like to express my gratitude to Prof. Roger Penrose for providing 
me with the tools used in the elaboration of the work presented here. I wish 
to acknowledge Dr. Asghar Qadir for making some invaluable suggestions 
regarding the composition of an earlier version of the work. My warmest 
thanks go to the Brazilian agency CNPq for financial support. 

REFERENCES 

Cardoso, J. G. (1991). International Journal of Theoretical Physics, 4, 447. 
Cardoso, J. G. (1993). International Journal of Modern Physics A, 8, 2437. 
Penrose, R. (1975). In Quantum Gravity: An Oxford Symposium, C. J. Isham, R. Penrose, and 

D. W. Sciama, eds., Oxford University Press, Oxford. 
Penrose, R. (1980). General Relativity and Gravitation, 12, 225. 
Penrose, R., and MacCallum, M. A. H. (1972). Physics Reports C, 6, 241. 
Penrose, R., and Rindler, W. (1984). Spinors and Spacetime, Vol. 1, Cambridge University 

Press, Cambridge. 
Penrose, R., and Rindler, W. (1986). Spinors and Spacetime, Vol. 2, Cambridge University 

Press, Cambridge. 


